Networks Accuracy trained
Paper | Dataset | Network | Bit(A/W/G) | Paper report | My Accuracy | Comment |
---|---|---|---|---|---|---|
Group-net | imagenet | resnet18 | 1/1/32 | 63.x | 63.772 | without-softgate, sgd-with-decay, small-lr |
LQ-net | cifar10 | vgg-small | 32/32/32 | 93.8 | 94.21 | - |
LQ-net | cifar10 | vgg-small | 2/1/32 | 93.4 | - | - |
LQ-net | cifar10 | vgg-small | 2/2/32 | 93.5 | 94.41 | - |
LQ-net | cifar10 | vgg-small | 3/2/32 | 93.8 | - | - |
LQ-net | cifar10 | vgg-small | 3/3/32 | 93.8 | - | - |
LQ-net | cifar10 | resnet20 | 32/32/32 | 92.1 | 92.86 | bacs |
LQ-net | cifar10 | resnet20 | 32/32/32 | 92.1 | 92.36 | cbas,proxquant |
LQ-net | cifar10 | resnet20 | 2/1/32 | 88.4 | 88.97 | bacs |
LQ-net | cifar10 | resnet20 | 2/2/32 | 90.2 | 90.16 | bacs |
LQ-net | cifar10 | resnet20 | 2/2/32 | 90.2 | 90.84 | bacs, momentum, lr=0.1, v7-1 |
MLQ-net | cifar10 | resnet20 | 2/2/32 | 90.2 | 90.41 | bacs, lqnet W + alqnet A |
ALQ-net | cifar10 | resnet20 | 2/2/32 | 90.2 | 90.36 | bacs, v0_rand_1 |
LQ-net | cifar10 | resnet20 | 3/2/32 | 91.1 | 91.34 | bacs |
LQ-net | cifar10 | resnet20 | 3/3/32 | 91.6 | 92.23 | bacs |
LQ-net | cifar10 | resnet20 | 32/2/32 | 91.8 | 91.86 | bacs, _0 |
ALQ-net | cifar10 | resnet20 | 32/2/32 | 91.8 | 91.93 | bacs, v2-0 |
LQ-net | cifar10 | mobilenetv1 | 32/32/32 | - | 90.93 | cbas |
LQ-net | cifar100 | resnet20 | 32/32/32 | - | 68.75 | bacs |
LQ-net | cifar100 | resnet20 | 32/2/32 | - | 67.3 | bacs |
LQ-net | cifar100 | resnet20 | 2/2/32 | - | 63.10 | bacs, v7-0.001_v9_off_0 |
MLQ-net | cifar100 | resnet20 | 2/2/32 | - | 63.55 | bacs, av0_wv0-v9_1 |
NLQ-net | cifar100 | resnet20 | 2/2/32 | - | 63.88 | bacs, aoff-v0_wv0_1 |
NLQ-net | cifar100 | resnet20 | 2/2/32 | - | 63.73 | bacs, aoff-v0_wv0_3 |
ALQ-net | cifar100 | resnet20 | 2/2/32 | - | 63.42 | bacs, v0_1 |
ALQ-net | cifar100 | resnet20 | 2/2/32 | - | 63.7 | bacs, v0_nod_1 |
ALQ-net | cifar100 | resnet20 | 2/2/32 | - | 63.57 | bacs, v0_nod_2 |
ALQ-net | cifar100 | resnet20 | 2/2/32 | - | 63.58 | bacs, v0_rand_1 |
ALQ-net | cifar100 | resnet20 | 2/2/32 | - | 64.47 | bacs, v0_nod2_1 |
LQ-net | cifar100 | mobilenetv1 | 32/32/32 | 65.98 | 68.23 | cbas, weiaicunzai |
LQ-net | imagenet | alexnet | 32/32/32 | 61.8 | 62.57 | acb, dali, server |
LQ-net | imagenet | alexnet | 32/32/32 | 61.8 | 62.644 | acb, phoenix, imagenet |
LQ-net | imagenet | alexnet | 32/2/32 | 60.5 | 60.418 | acb, imagenet |
LQ-net | imagenet | resnet18 | 32/32/32 | 69.6 | 69.7 | epochs=100, SGDR, bacs |
LQ-net | imagenet | resnet18 | 32/32/32 | 69.6 | 70.2 | epochs=120, custom-step, bacs, imagenet |
LQ-net | imagenet | resnet18 | 32/32/32 | 69.6 | 70.09 | epochs=120, custom-step, bacs, dali |
LQ-net | imagenet | resnet18 | 2/2/32 | 64.0 | 64.19 | archlab, epoch2=120, custom-step, imagenet |
LQ-net | imagenet | resnet18 | 2/1/32 | 62.6 | ? | server |
Dorefa | cifar10 | resnet20 | 32/32/32 | - | 92.86 | TTN,bacs |
Dorefa | cifar10 | resnet20 | 32/1/32 | - | 90.47 | pytorch-dorefa |
Dorefa | cifar10 | resnet20 | 32/2/32 | - | 91.7 | pytorch-dorefa |
Dorefa | cifar10 | resnet20 | 32/1/32 | - | 90.95 | my code, bacs |
Dorefa | cifar10 | resnet20 | 2/2/32 | - | 89.51 | my code, cbas, stratch |
Dorefa | cifar10 | resnet20 | 2/2/32 | - | 85.06 | my code, cbas, finetune, epoch=100 |
Dorefa | cifar10 | resnet20 | 2/2/32 | - | 89.65 | my code, cbas, finetune, epoch=200 |
PACT | cifar10 | resnet20 | 2/2/32 | - | 89.36 | my code, cbas, stratch |
Dorefa | cifar10 | resnet20 | 3/3/32 | - | 90.44 | my code, cbas, stratch |
Dorefa | imagenet | alexnet | 32/32/32 | 61.8 | 61.83 | acb, imagenet, sgdr |
Dorefa | imagenet | alexnet | 32/32/32 | 61.8 | 57.176 | acb, imagenet, custom-step |
Dorefa | imagenet | alexnet | 2/1/32 | 53.4 | 56.524 | acb, imagenet, adam, stratch |
Dorefa | imagenet | resnet18 | 4/1/32 | 59.2 | 65.348 | bacs, adam, 90 epochs, finetune |
Dorefa | imagenet | resnet18 | 4/1/32 | 59.2 | 61.156 | bacs, sgd, 120 epochs, stratch |
Dorefa | imagenet | resnet18 | 2/2/32 | - | 64.206 | bacs, sgd-4, 30 epochs, finetune |
Dorefa-TET | imagenet | resnet18 | 2/2/32 | - | 66.734 | bacs, wt-var, sgd-5, |
Dorefa-TET | imagenet | resnet18 | 2/2/32 | - | 67.008 | bacs, wt-var, sgd-4, bs=256, imagenet, WD=1e-4 |
Dorefa-TET | imagenet | resnet18 | 2/2/32 | - | 66.856 | bacs, wt-var, sgd-4, FP16 |
Dorefa-TET | imagenet | resnet18 | 2/2/32 | - | 66.842 | bacs, wt-var, sgd-9, FP16, 40EP, n-d-s, WD=2e-5 |
Dorefa-TET | imagenet | resnet18 | 1/1/32 | - | 51.338 | bacs, wt-var, sgd-9, FP16, 40EP, n-d-s, WD=2e-5 |
Dorefa-TET | imagenet | resnet18 | 1/1/32 | - | ??.??? | bacs, wt-var, sgd-9, FP16, 40EP, n-d-s, WD=2e-5, wtet |
Dorefa-TET | imagenet | resnet18 | 2/2/32 | - | 65.796 | bacs, wt-non, sgd-9, FP16, 40EP, n-d-s, WD=2e-5, wtet |
Dorefa-TET | imagenet | resnet18 | 2/2/32 | - | 66.962 | bacs, wt-var, sgd-9, FP16, 40EP, n-d-s, WD=2e-5, wtet |
Dorefa-TET | imagenet | resnet18 | 2/2/32 | - | 63.132 | bacs, wt-var, sgd-9, bs=1024 40EP |
Dorefa-TET | imagenet | resnet18 | 2/2/32 | - | 66.788 | bacs, wt-var, sgd-9, FP16, 40EP, n-d-s, WD=1e-4 |
Dorefa-TET | imagenet | resnet18 | 2/2/32 | - | 65.918 | bacs, wt-var, sgd-9, FP16, 40EP, n-d-s, WD=1e-4 scale5-fan |
Dorefa-TET | imagenet | resnet18 | 2/2/32 | - | diverg | bacs, wt-var, sgd-4, FP16, grad-scale:fan-scale2 |
Dorefa-TET | imagenet | resnet18 | 2/2/32 | - | diverg | bacs, wt-var, sgd-4, FP16, grad-scale:fan-scale1 |
Dorefa-TET | imagenet | resnet18 | 2/2/32 | - | 63.586 | bacs, wt-var, sgd-4, FP16, grad-scale:mean-fan-scale2 |
Dorefa-TET | imagenet | resnet18 | 2/2/32 | - | 63.078 | bacs, wt-var, sgd-4, FP16, grad-scale:mean-fan-scale1 |
Dorefa-TET | imagenet | resnet18 | 2/2/32 | - | 66.032 | bacs, wt-var, sgd-8, mixup0.7, 60EP, n-d-s |
Dorefa-TET | imagenet | resnet18 | 2/2/32 | - | 66.508 | bacs, wt-var, sgd-4, fix-arch |
Dorefa-TET | imagenet | resnet18 | 2/2/32 | - | 66.968 | bacs, wt-var, sgd-4, fix-arch, small WD |
Dorefa-TET | imagenet | resnet18 | 2/2/32 | - | 66.442 | bacs, wt-var, sgd-7, fix-arch, mixup0.7, 90EP, n-d-s |
Dorefa-TET | imagenet | resnet18 | 2/2/32 | - | 66.802 | bacs, wt-var, sgd-4, fix-arch2 singleconv |
Dorefa-TET | imagenet | det-r18 | 2/2/32 | - | 65.504 | wt-mean-var {1}, sgd-9, FP16 O1 wd2e-5 |
Dorefa-TET | imagenet | det-r34 | 2/2/32 | - | 69.858 | wt-mean-var {1}, sgd-9, FP16 O1 wd2e-5 |
Dorefa-TET | imagenet | det-r18 | 2/2/32 | - | 67.306 | wt-var, sgd-9, FP16 O1 wd2e-5, wtet |
Dorefa-TET | imagenet | det-r34 | 2/2/32 | - | 71.122 | wt-var, sgd-9, FP16 O1 wd2e-5, wtet |
Dorefa-TET | imagenet | det-r50 | 2/2/32 | - | on-progress | wt-var, sgd-9, FP16 O1 wd2e-5, wtet |
Dorefa-TET | imagenet | det-r18 | 3/3/32 | - | on-progress | wt-var, sgd-9, FP16 O1 wd2e-5, wtet |
Dorefa-TET | imagenet | det-r50 | 3/3/32 | - | on-progress | wt-var, sgd-9, FP16 O1 wd2e-5, wtet |
Fixup | imagenet | resnet18 | 32/32/32 | 68.776 | 68.956 | cbsa, mixup0.7, 120 epochs, stratch |
Fixup | imagenet | resnet18 | 32/32/32 | 68.776 | 68.776 | cbsa, no mixup, 120 epochs, stratch |
HORQ++ | imagenet | resnet18 | 32/32/32 | - | 67.902 | bacs, PReLU |
HORQ++ | imagenet | resnet18 | 32/32/32 | - | 68.282 | bcas |
{1}: has no effect (no weight normalization), as it uses the dorefa.qfn/tet-wt function which supports var only